

18th December 2024

Amended Announcement

Firetail Resources Limited (**Firetail** or **the Company**) (ASX: FTL) wishes to advise that the ASX announcement released on 16th December 2024 titled "Drilling Extends High Grade Copper Mineralisation at Skyline" has been amended and is attached to this release.

The amended announcement includes additional disclosures in regard to metal equivalent reporting as per JORC clause 50 and is now included in JORC Table 1 Section 2 relating to "data aggregation methods". Further drill information relating to new assay results has also been included in Table 1 and Table 3 of the release.

This announcement has been approved for release by the Board of Directors.

For more information contact:

Investors:
Glenn Poole
Managing Director
Firetail Resources Limited
+61 8 9322 2338
info@firetailresources.com.au
www.firetailresources.com.au

Media: Nicholas Read Read Corporate +61 8 9388 1474 info@readcorporate.com.au

18th December 2024

Firetail Drills 23m @ 3.7% CuEq¹ Extending High-Grade Mineralisation at Skyline Copper Project

New drill intercepts with grades to 5.1% CuEq¹ confirm substantial down-plunge extensions to known mineralisation, highlighting significant growth potential

Key Points

- Significant new drilling results from recent 5,000m drilling program include:
 - O 23.0m @ 3.7% CuEq1 (3.6% Cu, 0.3% Zn, 4.3g/t Ag) from 152.0m (YH24-126)
 - Including 11.2m @ 5.1% CuEq (5.0% Cu, 0.2% Zn, 5.8g/t Ag) from 154.4m
 - O 2.40m @ 2.7% CuEq (2.4% Cu, 1.15% Zn, 8.6g/t Ag) (YH24-125)
 - o 12.8m @ 1.2% CuEq (0.9% Cu, 0.6% Zn, 6.4g/t Ag) from 145.5m (YH24-124)
 - And 9.5m @ 1.00% CuEq (0.9% Cu, 0.1% Zn, 4.0g/t Ag) from 193.5m
 - O 8.3m @ 1.0% CuEq (0.8% Cu, 0.5% Zn, 1.7g/t Ag) from 120.0m (YH24-129)
- Additional sampling of previously untested drill core from prior operators has significantly expanded the mineralised intervals including:
 - 14.4m @ 2.1 % CuEq from 109.1m (previously 5.3m @ 2.8% CuEq from 113.7m) (YH22-078)
 - Including 2.4m @ 4.5% CuEq from 109.1m
 - And 3.5m @ 3.3% CuEq from 115.5m
 - o 27.5m @ 2.0% CuEq from 185.3m (previously 8.80m @ 3.3% CuEq from 190.2m) (YH22-078)
 - Includes 13.7m @ 3.0% CuEq from 185.3m
 - 22.0m @ 1.3% CuEq from 169.0m (previously 20.5m @ 1.3% CuEq from 170.5m) (YH22-71)
 - Including 4.7m @ 3.0% CuEq from 180.0m
 - 13.3m @ 1.0% CuEq from 237.0m (previously 9.8m @ 1.2% CuEq from 240.5m) (YH22-71)
- Shallow gold-bearing intervals identified outside the target corridor highlight the potential for additional parallel mineralising sequences in line with the Cyprus-style VMS deposit model:
 - O **2.4m @ 6.7% CuEq (**0.7% Cu, 8.4% Zn, 172.9 Ag & 2.0g/t Au) from 46.8m (YH22-080)
- Drilling results pending for 17 holes, providing strong upcoming news-flow as additional assay results are received.

¹ Calculation for reported drill results CuEq (%) = Cu(%) + (Zn (%) x 0.30) + (Ag (g/t) x 0.010), full breakdown as below in compliance statement

Milestone				2024					2025	
Milestone	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Announcement Acquisition of Skyline	V									
Completion of										
Acquisition				•						
Appointment of				\checkmark						
Managing Director										
Maiden 5,000m drilling								ASSAYS		
program					_			ASSATS		
Property wide										
Airborne EM Survey										
Downhole EM										→
Ground EM										
Second Phase										
Diamond Drilling										

Firetail's Managing Director, Glenn Poole, commented:

"Our maiden drill program at Skyline continues to exceed expectations, with the thick, high-grade intercepts in the latest holes significantly expanding the known mineralisation and highlighting the enormous upside at the project.

"The information gained from drilling, together with results of the recent Airborne EM survey and from the upcoming down-hole EM survey will help us to refine our targeting approach and facilitate the next phase of drilling, both in the near-mine environment and targeting extensions down-dip and along strike.

"In the meantime, re-sampling of historic drill core has reaffirmed the potential we see across the broader Skyline mineral system, adding meaningful thicknesses and grades to the known drill intercepts at a very low cost. This shows the endowment and potential of the system and sets the stage for what should be a very exciting year ahead for Firetail.

"Work is also continuing to evaluate the potential of other economic minerals within the system, with the elevated gold results outside the known mineralised sequence providing evidence of a later stage, mineralising event potentially producing a formation that has not been previously targeted and effectively tested at Skyline. We will be actively pursuing this potential next year as we work to unlock the full potential of this district-scale VMS asset."

Firetail Resources Limited (**Firetail** or **the Company**) (ASX: FTL) is pleased to report further assay results from the recently completed 5,000m diamond drilling program at the Skyline Copper Project (**Skyline** or the **Project**), located in Newfoundland, Canada.

Figure 1: Skyline Copper Project Location Plan

Firetail is also pleased to report the results of re-sampling historic drill core, highlighting one of the many growth opportunities identified at the Skyline Copper Project. By leveraging off existing drilling, Firetail has been able to expand and re-calculate known mineralised intercepts and discover new zones at a minimal cost. The historic core sampling results are from targeted areas where sampling had previously ended in mineralisation or aligned with projected mineralisation, with further re-sampling opportunities identified within the "mineralised corridor".

As the Company continues to enhance its understanding of the mineralisation and expand the scope of targeting, a gold-zinc-silver zone has been identified that had not been previously released to the market. This zone hosts minor amounts of copper sulphides and has been overlooked in most of the

historic sampling programs. The stratigraphic sequence that hosts this new mineralised zone is supported by the formation sequences of VMS deposits.

Firetail has developed a targeted sampling program to further evaluate this potential new mineralised horizon in parallel with its existing exploration activities.

Importantly, results from the property-wide EM survey are due in the coming weeks with the Company's geophysical consultants currently interpreting the raw data, integrating historic data and incorporating data collected from the current drilling campaign.

Given the blind nature of VMS deposits in this district, the results of the EM survey in conjunction with the commencement of the upcoming DHEM program will be the major driving force for an aggressive property-wide exploration strategy leading into 2025.

Firetail Drilling Results Overview

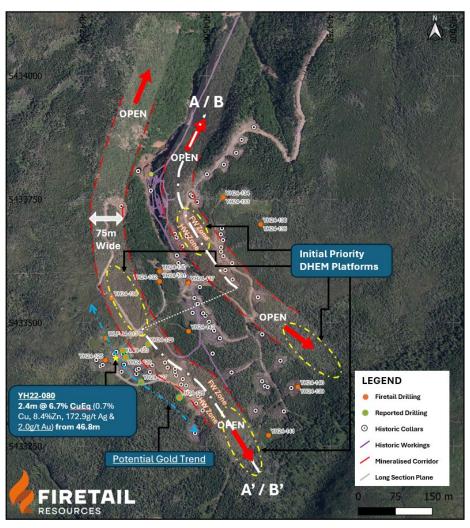


Figure 2: Collar Plan of Previous Drilling, Current Drill Holes With Results, Drill Holes With Results Pending and Section Lines

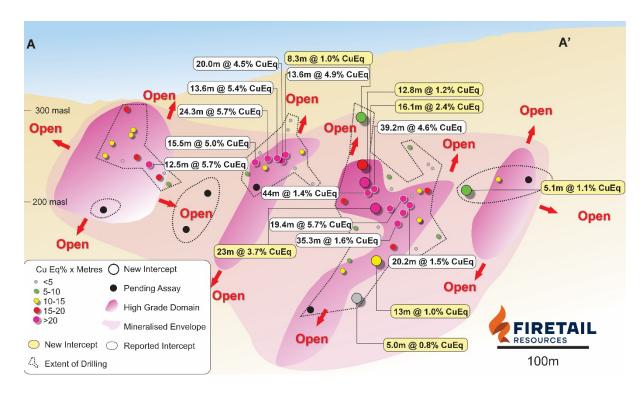


Figure 3: Hangingwall Lode Section

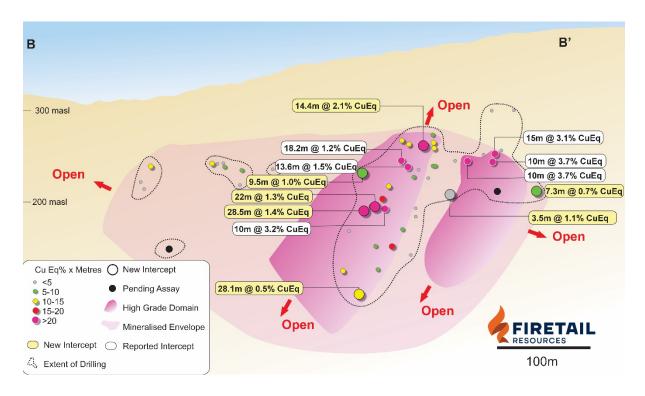


Figure 4: Footwall Lode Section

Sampling of Previous Drill Core

Through the process of Firetail undertaking re-logging of the drilling completed in 2022 by the York Harbour Metals, mineralised intercepts were identified, sampled and submitted for analysis. The results have increased the width of mineralisation intersected and provided further insights into the endowment of the system and potential extents of the mineralisation

This historic core sampling campaign also yielded further mineralised intercepts within the mineralised corridor, occurring both in and outside the noted mineralised lodes.

This further increases the potential scale of the mineralised system and reinforces the significant opportunity which Firetail is uncovering at the Skyline Project.

Further results from historical core sampling include:

- 14.4m @ 2.1 % CuEq from 109.1m (previously 5.3m @ 2.8% CuEq from 113.7m) (YH22-078)
 - o Including 2.4m @ 4.5% CuEq from 109.1m
 - o And 3.5m @ 3.3% CuEq from 115.5m
- **27.5m @ 2.0% CuEq from 185.3m** (previously 8.80m @ 3.3% CuEq from 190.2m) (YH22-078)
 - o Includes 13.7m @ 3.0% CuEq from 185.3m
- 22.0m @ 1.3% CuEq from 169.0m (previously 20.5m @ 1.3% CuEq from 170.5m) (YH22-71)
 - o Including 4.7m @ 3.0% CuEq from 180.0m
- 13.3m @ 1.0% CuEq from 237.0m (previously 9.8m @ 1.2% CuEq from 240.5m) (YH22-71)

Figure 5: YH22-78 - 204.0m - 205.0m - 1.86% Cu, 0.11% Zn, 3.4 g/t Ag (FTL Sample - Previously Untested)

Figure 6: YH24-126 - 170.20-170.70m, 3.16% CuEq - 3.09% Cu, 0.11% Zn, 12.1g/t Ag

About Firetail Resources

Firetail Resources (ASX: FTL) is an Australian-based copper exploration company currently focused on its flagship Skyline Copper Project located in Newfoundland, Canada and generative exploration at Picha in Peru.

The Skyline Copper Project is an advanced high-grade Copper-Zinc-Silver VMS Project in Newfoundland, Canada, host to historic production of 100,000 tonnes mined at 3-12% Cu, 7% Zn and 1-3oz/t Ag (refer to Firetail's ASX announcement dated 6 June 2024). The project area covers 110km² with a 25km strike of highly prospective lithology and contact zones currently being targeted by high impact drilling and high resolution geophysics.

Firetail also has exposure to over 280km² of greenfield high-grade copper potential through its 70% holding in the Picha Copper-Silver Project and Charaque Copper Project in Southern Peru. The Picha and Charaque Projects are hosted within the Tertiary volcanic belt and is also in the NW extension of the Tucari and Santa Rosa high sulfidation systems and in the SE extension of the skarn-porphyry belt that hosts the Tintaya district. The area is prospective for epithermal, stratabound, carbonate replacement (CRD) and porphyry related styles of copper mineralization. Picha is a very lightly explored copper-silver project where Firetail is generating multiple drill-ready targets. The Peru Projects are held through the Peruvian entity Kiwanda S.A.C (70% ASX: FTL/30% ASX:THB)

The Company currently has active exploration programs across the Skyline Project, including processing of recently completed airborne EM survey, modelling of mineralisation intersected in recent drilling and analysis of drilling results. In Peru the in-country exploration team is conducting ground-based mapping and soil sampling to define existing and additional high potential copper targets.

Glenn Poole

Managing Director
Firetail Resources Limited
+61 8 9322 2338
info@firetailresources.com.au
www.firetailresources.com.au

Nicholas Read Read Corporate +61 8 9388 1474 info@readcorporate.com.au

Compliance Statement

Metal equivalents ("CuEq") for the drilling completed at the Skyline Project have been calculated at a copper price of US\$9,000/t, silver price of US\$28/oz and zinc price of US\$2,700/t. Individual grades for the metals are set out at Tables 2, 3 and 4 of this announcement. Copper equivalent was calculated based on the formula CuEq (%) = Cu(%) + (Zn (%) x 0.30) + (Ag (g/t) x 0.010). It is acknowledged that other metals do occur within the mineralised intercepts but due to the irregular occurrence these have not been included in reporting to maintain consistency of comparable intercepts. Where other minerals are included, this will be noted with the intercepts with gold calculated using (Au (g/t) x 0.89) with a gold price of US\$2500/Oz.

No metallurgical recovery factors have been applied to the drill hole results due to the exploration nature of the drilling. The Company's view is that all elements in the copper equivalent calculation have a reasonable potential to be recovered and sold. No value has been given to other minerals, which may potentially have economic value, in the calculation of the Copper equivalent value.

Exploration Results

The information in this announcement is based on, and fairly represents information compiled by Mr Glenn Poole, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Poole consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Forward-looking statements

This announcement may contain certain "forward-looking statements". Forward looking statements can generally be identified by the use of forward-looking words such as, "expect", "should", "could", "may", "predict", "plan", "will", "believe", "forecast", "estimate", "target" and other similar expressions. Indications of, and guidance on, future earnings and financial position and performance are also forward-looking statements. Forward-looking statements, opinions and estimates provided in this presentation are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements including projections, guidance on future earnings and estimates are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance.

Previously Reported Information

The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where

that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Table 1: Collar Table Current and reported drilling

Drilled By	Hole	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)
YHM	YH21-001	404276.3	5433424.7	355.0	-45	60	248
YHM	YH21-002	404285.2	5433411.6	356.1	-45	60	44
YHM	YH21-003	404289.2	5433414.5	356.5	-45	60	27.25
YHM	YH21-004	404331.9	5433415.4	359.2	-60	60	218
YHM	YH21-005	404385.1	5433400.0	368.0	-60	60	185
YHM	YH21-006	404358.6	5433406.8	361.8	-60	60	206
YHM	YH21-007	404345.3	5433442.0	359.3	-60	60	134
YHM	YH21-008	404528.5	5433679.0	360.6	-60	240	140
YHM	YH21-009	404386.7	5433767.5	308.3	-45	60	20
YHM	YH21-010	404468.4	5433759.1	351.7	-75	240	204
YHM	YH21-011	404468.6	5433758.1	351.7	-50	269.5	102
YHM	YH21-012	404480.8	5433744.2	353.0	-75	240	36
YHM	YH21-013	404438.9	5433672.5	337.6	-60	60	125
YHM	YH21-014	404435.5	5433679.6	337.4	-60	60	132
YHM	YH21-015	404450.6	5433654.6	340.0	-60	60	161
YHM	YH21-016	404459.4	5433675.1	346.5	-60	60	137
YHM	YH21-017	404452.6	5433614.9	341.7	-60	60	143
YHM	YH21-018	404442.7	5433621.1	340.0	-60	60	164
YHM	YH21-019	404439.6	5433636.1	335.5	-60	60	150
YHM	YH21-020	404441.9	5433598.2	349.0	-60	60	164
YHM	YH21-021	404455.1	5433594.7	351.1	-60	60	122
YHM	YH21-022	404327.5	5433400.8	359.5	-60	60	236
YHM	YH21-023	404338.5	5433431.4	359.3	-60	60	200
YHM	YH21-024	404330.8	5433437.5	358.5	-60	60	176
YHM	YH21-025	404357.6	5433396.1	362.9	-60	60	209
YHM	YH21-026	404390.8	5433414.2	367.0	-60	60	161

ASX: FTL

ACN: 651 057 822

www.firetailresources.com.au info@firetailresources.com.au

Drilled By	Hole	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)
YHM	YH21-027	404415.5	5433419.4	368.6	-60	60	140
YHM	YH21-028	404421.8	5433409.5	369.8	-60	60	179
YHM	YH21-029	404422.2	5433409.7	369.9	-45	60	146
YHM	YH21-030	404458.4	5433372.8	374.9	-60	60	149
YHM	YH21-031	404461.7	5433361.0	375.5	-60	60	194
YHM	YH21-032	404466.4	5433354.5	376.5	-60	60	167
YHM	YH21-033	404482.7	5433351.7	378.3	-60	60	150
YHM	YH21-034	404477.9	5433335.9	377.9	-60	60	179
YHM	YH21-035	404491.8	5433322.4	380.8	-60	60	168
YHM	YH21-036	404495.2	5433332.5	380.4	-60	60	161
YHM	YH21-037	404451.6	5433385.8	373.5	-60	60	146
YHM	YH21-038	404327.0	5433736.0	345.8	-60	60	161
YHM	YH22-039	404448.3	5433374.9	373.7	-60	60	170
YHM	YH22-040	404438.2	5433392.9	372.5	-60	60	170
YHM	YH22-041	404435.9	5433400.1	371.6	-60	60	149
YHM	YH22-042	404478.5	5433336.4	377.6	-45	60	122
YHM	YH22-043	404467.7	5433355.0	376.5	-45	60	127.2
YHM	YH22-044	404467.0	5433354.6	376.5	-75	60	221
YHM	YH22-045	404420.9	5433409.2	369.8	-75	60	212
YHM	YH22-046	404389.3	5433413.4	367.0	-75	60	209
YHM	YH22-047	404390.1	5433413.9	367.0	-45	60	161
YHM	YH22-048	404357.3	5433404.0	362.4	-60	60	248
YHM	YH22-049	404358.2	5433404.5	362.3	-45	60	27
YHM	YH22-050	404362.4	5433406.7	362.3	-45	60	203
YHM	YH22-051	404333.0	5433415.5	359.3	-50	60	209
YHM	YH22-052	404332.5	5433415.2	359.2	-70	60	251
YHM	YH22-053	404329.8	5433437.1	358.3	-75	60	251
YHM	YH22-054	404316.8	5433440.9	358.2	-60	60	221
YHM	YH22-055	404373.8	5433448.7	360.0	-60	60	98.4
YHM	YH22-056	404471.4	5433520.1	360.1	-70	240	211

Drilled By	Hole	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)
YHM	YH22-057	404462.7	5433581.9	352.3	-60	60	135
YHM	YH22-058	404486.1	5433572.3	351.9	-53	240	101
YHM	YH22-059	404530.9	5433691.1	361.0	-70	240	170
YHM	YH22-060	404533.2	5433667.2	361.4	-70	240	170
YHM	YH22-061	404529.1	5433652.8	360.5	-70	240	170
YHM	YH22-062	404529.9	5433641.9	359.5	-60	240	140
YHM	YH22-063	404537.8	5433606.4	359.8	-57	240	116
YHM	YH22-064	404631.6	5434485.9	189.5	-60	60	230
YHM	YH22-065	404629.9	5434462.8	193.3	-60	65	257
YHM	YH22-066	404627.3	5434441.3	196.1	-60	65	230
YHM	YH22-067	404622.4	5434415.8	200.8	-50	38	221
YHM	YH22-068	404463.0	5433581.9	352.3	-46	13	200
YHM	YH22-069	404476.6	5433548.9	358.0	-65	240	275
YHM	YH22-070	404482.9	5433537.1	359.3	-65	240	272
YHM	YH22-071	404493.1	5433517.2	361.4	-65	240	278
YHM	YH22-072	404499.0	5433511.7	361.5	-65	240	279
YHM	YH22-073	404505.9	5433500.3	364.9	-65	240	273
YHM	YH22-074	404510.6	5433491.0	365.5	-65	240	276
YHM	YH22-075	404514.9	5433481.2	366.6	-65	240	266
YHM	YH22-076	404526.5	5433466.2	371.0	-65	240	251
YHM	YH22-077	404480.7	5433536.2	359.4	-65	240	281
YHM	YH22-078	404513.1	5433471.9	368.7	-65	240	260
YHM	YH22-079	404435.7	5433406.4	371.6	-50	60	173
YHM	YH22-080	404313.1	5433435.4	357.8	-66	60	287
YHM	YH22-081	404335.0	5433430.3	359.2	-70	60	263
YHM	YH22-082	404529.1	5433644.0	362.1	-70	240	182
YHM	YH22-083	404535.5	5433632.7	360.7	-70	240	182
YHM	YH22-084	404551.8	5433618.6	362.9	-45	58.67	182
YHM	YH22-085	404362.2	5433808.1	306.7	-45	60	152
YHM	YH22-086	404361.7	5433807.1	306.7	-45	90	152

Drilled By	Hole	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)
YHM	YH22-087	404361.1	5433805.2	306.7	-45	120	152
YHM	YH22-088	404656.3	5433320.4	402.0	-45	60	28
YHM	YH22-089	404600.0	5433320.5	388.8	-45	60	155
YHM	YH22-090	404672.2	5433365.6	387.9	-45	60	152
YHM	YH22-091	404617.9	5433371.4	388.3	-45	60	152
YHM	YH22-092	404649.4	5433421.8	378.4	-45	60	176
YHM	YH22-093	404550.7	5433397.9	382.3	-45	60	176
YHM	YH22-094	404613.3	5433474.0	369.0	-45	60	176
YHM	YH22-095	404527.2	5433467.1	371.0	-45	60	179
YHM	YH22-096	404495.1	5433518.1	361.4	-45	60	176
YHM	YH22-097	404604.8	5433549.4	366.5	-45	60	176
YHM	YH22-098	404552.5	5433587.5	365.2	-45	60	176
YHM	YH22-099	404614.2	5433379.7	380.1	-45	60	176
YHM	YH22-100	404625.7	5433368.1	381.8	-45	60	176
YHM	YH22-101	404469.0	5433757.6	351.7	-60	300	131
YHM	YH22-102	404468.5	5433756.8	351.7	-55	285	131
YHM	YH22-103	404468.8	5433756.7	351.7	-70	285	167
YHM	YH22-104	404471.3	5433754.2	351.7	-45	275	113
YHM	YH22-105	404471.7	5433754.2	351.7	-55	270	161
YHM	YH22-106	404472.2	5433754.2	351.7	-70	270	155
YHM	YH22-107	404472.1	5433753.8	351.7	-60	260	133.1
YHM	YH22-108	404472.4	5433753.8	351.7	-73	260	161
YHM	YH22-109	404472.2	5433754.7	351.7	-75	300	161
YHM	YH22-110	404591.7	5434199.8	226.8	-50	90	236
YHM	YH23-111	404500.8	5433798.1	351.9	-45	300	200
YHM	YH23-112	404536.5	5433818.6	354.1	-45	300	200
YHM	YH23-113	404560.2	5433842.8	353.2	-45	300	197
YHM	YH23-114	404572.0	5433869.0	349.1	-45	300	176
YHM	YH23-115	404597.8	5433895.9	341.5	-45	300	176
YHM	YH23-116	404477.8	5433275.1	382.2	-45	120	200

Drilled By	Hole	Easting	Northing	RL	Dip	Azimuth	Total Depth (m)
YHM	YH23-117	404403.4	5433096.4	387.6	-45	120	215
YHM	YH23-118	404295.0	5432875.0	394.3	-45	120	200
YHM	YH23-119	404276.9	5433011.0	372.9	-45	120	200
YHM	YH23-120	403461.5	5432236.1	160.3	-45	90	221
YHM	YH23-121	403681.8	5432097.7	151.3	-45	90	224
YHM	YH23-122	403788.8	5432270.4	164.0	-45	60	185
FTL	YH24-123	404330.0	5433445.0	358.7	-60	60	297
FTL	YH24-124	404330.0	5433445.0	358.7	-45	60	261
FTL	YH24-125	404295.0	5433425.0	357.1	-65	60	417
FTL	YH24-126	404335.0	5433430.0	357.0	-60	60	285
FTL	YH24-127	404367.0	5433382.0	363.7	-65	60	327
FTL	YH24-128	404443.0	5433350.0	373.3	-60	60	300
FTL	YH24-129	404380.0	5433458.0	360.2	-55	60	177
NRM	YH-91-2	404534.28	5433755.43	358.8	-55	260	249.9
NRM	YH-91-5	404404.45	5433024.37	390.6	-50	115	202.4

Table 2: Significant Intercept Assays long section intercepts

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	%CuEq	%CuEq*m
YHM	YH21-001	210.27	212.00	1.73	0.69	17.55	15.67	6.11	10.58
YHM	YH21-004	166.61	169.12	2.51	1.36	0.06	2.37	1.40	3.53
YHM	YH21-004	180.03	193.69	13.66	1.73	0.52	1.72	1.91	26.07
YHM	YH21-005	146.2	149.88	3.68	0.42	1.01	2.56	0.74	2.74
YHM	YH21-005	159	167.30	8.30	0.41	0.22	1.94	0.50	4.13
YHM	YH21-006	178.35	198.50	20.15	1.46	0.09	2.25	1.51	30.33
YHM	YH21-008	122.3	122.90	0.60	0.89	0.83	4.30	1.18	0.71
YHM	YH21-009	5	14.54	9.54	1.69	0.11	2.83	1.75	16.74
YHM	YH21-010	123.78	127.47	3.69	0.80	0.21	2.21	0.89	3.28
YHM	YH21-013	109.53	112.41	2.88	0.88	0.17	1.79	0.95	2.74

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	%CuEq	%CuEq*m
YHM	YH21-014	106.08	116.00	9.92	1.00	0.13	1.75	1.06	10.49
YHM	YH21-015	121.17	125.63	4.46	1.35	0.33	1.77	1.46	6.52
YHM	YH21-015	140.9	142.85	1.95	2.26	0.43	3.94	2.43	4.73
YHM	YH21-016	115.3	127.50	12.20	0.26	0.09	1.17	0.30	3.68
YHM	YH21-017	120	126.51	6.51	0.36	0.16	1.13	0.42	2.73
YHM	YH21-018	93.7	118.00	24.30	2.77	9.29	18.21	5.74	139.42
YHM	YH21-019	97	112.50	15.50	3.28	5.04	17.97	4.97	77.11
YHM	YH21-020	109.4	129.46	20.06	2.51	6.33	5.40	4.46	89.44
YHM	YH21-021			NSI				0.00	0.00
YHM	YH21-022	166.62	186.00	19.38	1.76	12.46	19.15	5.69	110.27
YHM	YH21-023	164.5	177.50	13.00	1.36	0.04	1.27	1.39	18.02
YHM	YH21-024	147	186.15	39.15	4.34	0.61	7.06	4.59	179.64
YHM	YH21-025	174.26	180.10	5.84	1.21	5.54	9.92	2.97	17.35
YHM	YH21-026	150	156.00	6.00	0.62	0.10	4.29	0.70	4.18
YHM	YH21-027	119.03	124.30	5.27	1.06	0.15	2.44	1.13	5.93
YHM	YH21-028	123.64	133.00	9.36	1.05	0.13	2.81	1.12	10.47
YHM	YH21-028	145.3	152.27	6.97	0.86	0.33	4.51	1.00	6.99
YHM	YH21-029	130	136.10	6.10	1.21	0.30	3.41	1.33	8.14
YHM	YH21-030	137	143.00	6.00	0.09	0.92	1.96	0.39	2.34
YHM	YH21-031	141	151.00	10.00	1.51	6.05	32.30	3.65	36.49
YHM	YH21-032	139	154.00	15.00	1.20	5.28	26.79	3.06	45.86
YHM	YH21-033	139.65	144.28	4.63	0.38	1.13	1.60	0.74	3.41
YHM	YH22-039	144.37	151.80	7.43	0.55	3.15	7.81	1.57	11.69
YHM	YH22-040	144.5	146.55	2.05	0.52	0.22	4.56	0.63	1.29
YHM	YH22-042	105.7	107.15	1.45	0.12	1.70	1.41	0.64	0.93
YHM	YH22-043	102	106.00	4.00	0.03	0.13	3.53	0.10	0.39
YHM	YH22-044	156.32	159.00	2.68	2.35	8.94	45.95	5.49	14.72

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	%CuEq	%CuEq*m
YHM	YH22-045	138.63	139.70	1.07	1.10	8.98	11.09	3.91	4.18
YHM	YH22-046	153.57	163.00	9.43	1.15	0.05	1.91	1.18	11.12
YHM	YH22-046	187	199.35	12.35	0.88	0.28	2.10	0.98	12.16
YHM	YH22-047	138.95	150.00	11.05	1.26	0.07	3.86	1.32	14.55
YHM	YH22-048	166.6	168.45	1.85	2.44	4.58	10.12	3.92	7.25
YHM	YH22-050	141.4	146.00	4.60	1.20	0.32	3.02	1.32	6.09
YHM	YH22-050	170.52	184.15	13.63	1.42	0.09	6.28	1.51	20.62
YHM	YH22-051	175.55	178.65	3.10	2.81	0.12	5.35	2.90	9.00
YHM	YH22-051	188	192.00	4.00	3.16	0.18	7.27	3.28	13.14
YHM	YH22-052	217.05	236.09	19.04	0.80	0.57	1.59	0.98	18.74
YHM	YH22-054	152.15	196.15	44.00	1.25	0.56	2.42	1.44	63.33
YHM	YH22-056	172.28	182.30	10.02	1.60	0.05	2.85	1.64	16.43
YHM	YH22-057	109.38	116.34	6.96	1.18	1.37	5.35	1.64	11.45
YHM	YH22-059	137.4	139.50	2.10	1.13	0.13	16.66	1.33	2.80
YHM	YH22-060	129.48	133.00	3.52	1.95	6.37	22.59	4.09	14.39
YHM	YH22-061	115.34	128.92	13.58	3.02	7.24	21.42	5.40	73.38
YHM	YH22-062			NSI				0.00	0.00
YHM	YH22-068	161	165.20	4.20	1.12	0.12	1.62	1.18	4.94
YHM	YH22-069	245.25	248.00	2.75	2.75	0.08	3.10	2.81	7.73
YHM	YH22-070	209.5	223.00	13.50	0.73	1.12	1.55	1.08	14.56
YHM	YH22-070	248.1	260.40	12.30	1.10	0.14	1.45	1.16	14.26
YHM	YH22-071	169	190.00	21.00	1.30	0.05	0.84	1.33	27.84
YHM	YH22-071	240.5	250.30	9.80	1.19	0.05	1.37	1.22	11.91
YHM	YH22-072	181.9	191.90	10.00	3.15	0.10	1.95	3.20	32.00
YHM	YH22-073	173	182.00	9.00	1.18	0.05	1.00	1.21	10.88
YHM	YH22-073	189	224.30	35.30	1.41	0.39	2.36	1.55	54.58
YHM	YH22-074	105	111.00	6.00	1.77	0.07	3.47	1.82	10.94

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	%CuEq	%CuEq*m
YHM	YH22-074	124.51	142.70	18.19	1.08	0.14	4.52	1.16	21.18
YHM	YH22-074	174.35	195.32	20.97	0.92	0.08	5.01	0.99	20.83
YHM	YH22-075	153	159.18	6.18	1.11	0.11	2.85	1.17	7.25
YHM	YH22-075	190.38	191.70	1.32	1.72	0.20	18.77	1.97	2.59
YHM	YH22-075	198.67	202.00	3.33	0.93	0.09	6.13	1.01	3.38
YHM	YH22-075	240	243.00	3.00	0.97	0.12	2.21	1.03	3.08
YHM	YH22-076	111.6	122.00	10.40	1.23	0.27	3.41	1.34	13.98
YHM	YH22-076	139.76	147.50	7.74	0.95	0.28	2.41	1.06	8.21
YHM	YH22-077	203.5	215.00	11.50	0.16	1.54	1.54	0.64	7.35
YHM	YH22-078	109.1	123.50	14.40	1.69	1.38	2.52	2.13	30.69
YHM	YH22-078	185.26	211.60	26.34	1.94	0.13	2.94	2.01	52.82
YHM	YH22-080	34.5	36.62	2.12	2.24	0.13	3.29	2.31	4.90
YHM	YH22-081	198.41	201.33	2.92	0.39	2.21	2.91	1.09	3.17
YHM	YH22-081	231.95	239.55	7.60	1.11	0.23	0.68	1.19	9.01
YHM	YH22-082	111.78	125.33	13.55	2.45	7.61	17.08	4.90	66.44
YHM	YH22-083	132.65	134.95	2.30	1.34	0.06	2.75	1.39	3.19
YHM	YH22-084	149.1	152.80	3.70	0.75	0.08	2.44	0.80	2.97
YHM	YH22-086	82.75	92.30	9.55	0.75	0.28	2.81	0.86	8.26
YHM	YH22-087	51.5	64.92	13.42	0.86	0.29	1.07	0.96	12.89
YHM	YH22-101	121.45	127.00	5.55	1.48	0.40	9.56	1.70	9.44
YHM	YH22-102	123	131.00	8.00	0.38	0.69	1.80	0.61	4.88
YHM	YH22-103	135.95	140.00	4.05	0.76	0.14	2.08	0.82	3.32
YHM	YH22-104	105	108.00	3.00	3.26	4.09	15.14	4.64	13.92
YHM	YH22-104	112	113.00	1.00	6.88	12.05	39.75	10.89	10.89
YHM	YH22-105	119.95	129.22	9.27	1.88	0.11	3.96	1.95	18.05
YHM	YH22-106	114.45	124.20	9.75	1.38	0.10	3.02	1.44	14.03
YHM	YH22-107	120.62	133.10	12.48	3.61	6.53	10.96	5.68	70.89

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	%CuEq	%CuEq*m
YHM	YH22-108	121.35	135.65	14.30	0.90	0.27	1.85	1.00	14.26
YHM	YH22-109	141.28	143.35	2.07	0.71	0.08	1.53	0.75	1.55
FTL	YH24-123	152	168.07	16.07	1.58	2.55	5.52	2.40	38.60
FTL	YH24-123	185.66	214.19	28.53	1.41	0.04	1.04	1.44	41.01
FTL	YH24-126	152.05	188.00	35.95	2.35	0.59	2.94	2.56	92.02
NRN	YH-90-2	168.5	174.20	5.70	0.97	0.10	3.45	1.03	5.87

Table 3: Current Drilling Results Significant intercepts

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-124	145.52	146.24	0.72	6929	0.6929	71800	7.18	70
FTL	YH24-124	146.24	147	0.76	180	0.018	8900	0.89	5.8
FTL	YH24-124	147	148	1	240	0.024	2800	0.28	1.7
FTL	YH24-124	148	149	1	793	0.0793	4100	0.41	2.3
FTL	YH24-124	149	149.95	0.95	547	0.0547	3000	0.3	1.1
FTL	YH24-124	149.95	150.59	0.64	18900	1.89	1135	0.1135	3.7
FTL	YH24-124	150.59	151.45	0.86	2878	0.2878	295	0.0295	0.7
FTL	YH24-124	151.45	152.42	0.97	1050	0.105	958	0.0958	0.5
FTL	YH24-124	152.42	153.3	0.88	25700	2.57	1297	0.1297	5.1
FTL	YH24-124	153.3	155			0		0	
FTL	YH24-124	155	156	1	22700	2.27	1382	0.1382	5.3
FTL	YH24-124	156	156.5	0.5	355	0.0355	386	0.0386	0.4
FTL	YH24-124	156.5	157.5	1	31900	3.19	3400	0.34	5.1
FTL	YH24-124	157.5	158.5	1	12800	1.28	537	0.0537	2.3
FTL	YH24-124	158.5	159	0.5	1964	0.1964	213	0.0213	0.5
FTL	YH24-124	159	160	1	4764	0.4764	335	0.0335	1.3
FTL	YH24-124	178.5	179.5	1	4858	0.4858	3800	0.38	2.4
FTL	YH24-124	179.5	180.1	0.6	1393	0.1393	370	0.037	0.7

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-124	180.1	180.6	0.5	52400	5.24	1527	0.1527	5.3
FTL	YH24-124	180.6	181.5	0.9	2581	0.2581	761	0.0761	1.2
FTL	YH24-124	193.5	194	0.5	65200	6.52	3200	0.32	21
FTL	YH24-124	194	195	1	10500	1.05	690	0.069	3.2
FTL	YH24-124	195	196	1	1191	0.1191	172	0.0172	1.2
FTL	YH24-124	196	197	1	282	0.0282	368	0.0368	0.7
FTL	YH24-124	197	198	1	328	0.0328	198	0.0198	0.5
FTL	YH24-124	198	199	1	11500	1.15	608	0.0608	4.2
FTL	YH24-124	199	199.75	0.75	4537	0.4537	481	0.0481	2.7
FTL	YH24-124	199.75	200.25	0.5	17000	1.7	1151	0.1151	10.9
FTL	YH24-124	200.25	201	0.75	4167	0.4167	351	0.0351	3.1
FTL	YH24-124	201	202	1	7527	0.7527	413	0.0413	3.9
FTL	YH24-124	202	203	1	10500	1.05	538	0.0538	3.9
FTL	YH24-124	214.25	214.75	0.5	42700	4.27	2600	0.26	16.5
FTL	YH24-124	214.75	215.5	0.75	452	0.0452	159	0.0159	0.7
FTL	YH24-124	215.5	216.5	1	1595	0.1595	295	0.0295	1
FTL	YH24-124	216.5	217.5	1	4857	0.4857	348	0.0348	1.7
FTL	YH24-124	217.5	218.5	1	1706	0.1706	187	0.0187	1
FTL	YH24-124	218.5	219.5	1	1053	0.1053	697	0.0697	1.1
FTL	YH24-124	219.5	220.5	1	1039	0.1039	243	0.0243	2.4
FTL	YH24-124	220.5	221	0.5	60200	6.02	3600	0.36	20.3
FTL	YH24-124	221	221.5	0.5	5384	0.5384	529	0.0529	3.4
FTL	YH24-124	221.5	222	0.5	3374	0.3374	308	0.0308	1.9
FTL	YH24-124	222	223	1	7267	0.7267	635	0.0635	5
FTL	YH24-124	223	224	1	1866	0.1866	214	0.0214	2.6
FTL	YH24-124	224	225	1	5590	0.559	305	0.0305	2.1
FTL	YH24-125	25.6	25.9	0.3	15800	1.58	51000	5.1	9.2
FTL	YH24-125	27.4	28	0.6	25300	2.53	3900	0.39	6.3
FTL	YH24-125	28	28.5	0.5	17000	1.7	7500	0.75	10.2

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-125	28.5	29	0.5	22500	2.25	5600	0.56	15.5
FTL	YH24-125	29	29.5	0.5	30700	3.07	6700	0.67	2.7
FTL	YH24-125	252	252.5	0.5	14200	1.42	451	0.0451	1.2
FTL	YH24-125	252.5	253.5	1	6936	0.6936	403	0.0403	1.1
FTL	YH24-125	253.5	254.5	1	2447	0.2447	456	0.0456	0.3
FTL	YH24-125	254.5	255.5	1	1752	0.1752	1380	0.138	0.2
FTL	YH24-125	255.5	256.5	1	17100	1.71	689	0.0689	2.2
FTL	YH24-125	256.5	257	0.5	7265	0.7265	534	0.0534	1
FTL	YH24-125	257	258	1	2685	0.2685	345	0.0345	0.2
FTL	YH24-125	258	259	1	1448	0.1448	482	0.0482	0.2
FTL	YH24-125	259	260	1	948	0.0948	312	0.0312	0.2
FTL	YH24-125	260	261	1	1070	0.107	337	0.0337	0.2
FTL	YH24-125	261	262	1	1267	0.1267	336	0.0336	0.2
FTL	YH24-125	262	262.5	0.5	17000	1.7	837	0.0837	0.6
FTL	YH24-125	262.5	263.5	1	668	0.0668	460	0.046	0.2
FTL	YH24-125	263.5	264.5	1	1198	0.1198	1891	0.1891	0.2
FTL	YH24-125	264.5	265.5	1	4418	0.4418	917	0.0917	0.2
FTL	YH24-125	265.5	266.5	1	3908	0.3908	1525	0.1525	0.2
FTL	YH24-125	266.5	267.5	1	2990	0.299	7400	0.74	0.3
FTL	YH24-125	267.5	268.5	1	4568	0.4568	2500	0.25	0.2
FTL	YH24-125	268.5	269.5	1	1592	0.1592	1748	0.1748	0.2
FTL	YH24-125	269.5	270.5	1	2398	0.2398	1791	0.1791	0.2
FTL	YH24-125	270.5	271	0.5	1592	0.1592	1438	0.1438	0.2
FTL	YH24-125	271	271.5	0.5	4075	0.4075	562	0.0562	0.2
FTL	YH24-125	271.5	272.5	1	839	0.0839	1404	0.1404	0.2
FTL	YH24-125	272.5	273.5	1	4908	0.4908	2700	0.27	0.2
FTL	YH24-125	273.5	274	0.5	28000	2.8	1095	0.1095	1.5
FTL	YH24-125	274	275	1	3786	0.3786	3400	0.34	0.4
FTL	YH24-125	275	276	1	2116	0.2116	7100	0.71	0.5

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-125	276	277	1	521	0.0521	879	0.0879	0.2
FTL	YH24-125	277	278	1	497	0.0497	437	0.0437	0.2
FTL	YH24-125	278	279	1	1630	0.163	354	0.0354	0.2
FTL	YH24-125	279	280	1	2021	0.2021	389	0.0389	0.2
FTL	YH24-125	280	281	1	2965	0.2965	942	0.0942	0.2
FTL	YH24-125	281	282	1	4196	0.4196	1095	0.1095	3.9
FTL	YH24-125	282	282.5	0.5	788	0.0788	7600	0.76	8.0
FTL	YH24-125	282.5	283.5	1	1680	0.168	961	0.0961	0.7
FTL	YH24-125	283.5	284.5	1	727	0.0727	344	0.0344	0.2
FTL	YH24-125	284.5	285.5	1	4811	0.4811	429	0.0429	1.3
FTL	YH24-125	285.5	286.5	1	850	0.085	229	0.0229	0.2
FTL	YH24-125	286.5	287.5	1	116	0.0116	935	0.0935	0.2
FTL	YH24-125	287.5	288	0.5	152	0.0152	996	0.0996	0.2
FTL	YH24-125	288	288.5	0.5	36500	3.65	766	0.0766	1.8
FTL	YH24-125	288.5	289.5	1	18300	1.83	606	0.0606	0.6
FTL	YH24-125	289.5	290.1	0.6	5736	0.5736	406	0.0406	4.1
FTL	YH24-125	286.5	287.5	1	116	0.0116	935	0.0935	0.2
FTL	YH24-125	287.5	288	0.5	152	0.0152	996	0.0996	0.2
FTL	YH24-125	288	288.5	0.5	36500	3.65	766	0.0766	1.8
FTL	YH24-125	288.5	289.5	1	18300	1.83	606	0.0606	0.6
FTL	YH24-125	289.5	290.1	0.6	5736	0.5736	406	0.0406	4.1
FTL	YH24-126	152.05	152.66	0.61	19300	1.93	3700	0.37	5.9
FTL	YH24-126	152.66	153.16	0.5	24000	2.40	720	0.07	4.2
FTL	YH24-126	153.16	153.92	0.76	26900	2.69	820	0.08	4.1
FTL	YH24-126	153.92	154.42	0.5	68300	6.83	2500	0.25	7.6
FTL	YH24-126	154.42	154.92	0.5	88700	8.87	2800	0.28	9.5
FTL	YH24-126	154.92	155.42	0.5	85300	8.53	2700	0.27	7.8
FTL	YH24-126	155.42	156.06	0.64	50500	5.05	1388	0.14	5.2
FTL	YH24-126	156.06	156.56	0.5	34300	3.43	952	0.10	3.8

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-126	156.56	157.06	0.5	42100	4.21	1053	0.11	4.3
FTL	YH24-126	157.06	157.74	0.68	98500	9.85	2700	0.27	9.3
FTL	YH24-126	157.74	158.42	0.68	115500	11.55	4200	0.42	14.1
FTL	YH24-126	158.42	159.1	0.68	1531	0.15	180	0.02	<0.2
FTL	YH24-126	159.1	159.6	0.5	392	0.04	144	0.01	<0.2
FTL	YH24-126	159.6	160.1	0.5	85	0.01	113	0.01	<0.2
FTL	YH24-126	160.1	160.6	0.5	450	0.05	127	0.01	<0.2
FTL	YH24-126	160.6	161.25	0.65	71300	7.13	2400	0.24	8.9
FTL	YH24-126	161.25	161.9	0.65	28800	2.88	837	0.08	3.8
FTL	YH24-126	161.9	162.4	0.5	66100	6.61	2500	0.25	8.7
FTL	YH24-126	162.4	162.9	0.5	44100	4.41	1544	0.15	5.9
FTL	YH24-126	162.9	163.4	0.5	39700	3.97	1382	0.14	5.5
FTL	YH24-126	163.4	164	0.6	42900	4.29	1174	0.12	5.8
FTL	YH24-126	164	164.6	0.6	38800	3.88	1419	0.14	6.2
FTL	YH24-126	164.6	165.1	0.5	60800	6.08	1721	0.17	7.9
FTL	YH24-126	165.1	166.1	1	25100	2.51	726	0.07	2.7
FTL	YH24-126	166.1	167.1	1	34800	3.48	928	0.09	3.8
FTL	YH24-126	167.1	168.1	1	21100	2.11	695	0.07	2.3
FTL	YH24-126	168.1	169.1	1	14300	1.43	531	0.05	1.5
FTL	YH24-126	169.1	169.7	0.6	24900	2.49	866	0.09	2.8
FTL	YH24-126	169.7	170.2	0.5	98900	9.89	3700	0.37	12.1
FTL	YH24-126	170.2	170.7	0.5	30900	3.09	1131	0.11	3.6
FTL	YH24-126	170.7	171.2	0.5	5918	0.59	314	0.03	0.7
FTL	YH24-126	171.2	172.1	0.9	2693	0.27	420	0.04	0.2
FTL	YH24-126	172.1	172.75	0.65	9626	0.96	503	0.05	1.2
FTL	YH24-126	172.75	173.36	0.61	18200	1.82	793	0.08	2.9
FTL	YH24-126	173.36	174	0.64	9482	0.95	438	0.04	1.5
FTL	YH24-126	174	174.5	0.5	5798	0.58	492	0.05	0.9
FTL	YH24-126	174.5	175	0.5	14300	1.43	91000	9.10	1.9

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-126	214	215	1	2663	0.27	14100	1.41	0.7
FTL	YH24-126	215	216	1	2545	0.25	29700	2.97	1.4
FTL	YH24-126	216	217	1	6093	0.61	59100	5.91	2.8
FTL	YH24-126	217	218	1	4610	0.46	56300	5.63	1.9
FTL	YH24-126	218	218.5	0.5	1700	0.17	23100	2.31	0.4
FTL	YH24-126	218.5	219	0.5	2368	0.24	16000	1.60	0.7
FTL	YH24-127	198.92	199.7	0.78	13600	1.36	497	0.0497	1.3
FTL	YH24-127	199.7	200.4	0.7	112	0.0112	217	0.0217	0.2
FTL	YH24-127	200.4	200.9	0.5	57	0.0057	110	0.011	0.2
FTL	YH24-127	200.9	201.4	0.5	19400	1.94	703	0.0703	1.8
FTL	YH24-127	201.4	201.9	0.5	21700	2.17	838	0.0838	9.5
FTL	YH24-127	201.9	202.4	0.5	13600	1.36	783	0.0783	10.6
FTL	YH24-127	202.4	203	0.6	11700	1.17	1241	0.1241	10.0
FTL	YH24-127	203	204	1	5606	0.5606	838	0.0838	3.1
FTL	YH24-127	215.5	216.43	0.93	4800	0.48	12400	1.24	10.4
FTL	YH24-127	216.43	217.38	0.95	8500	0.85	1582	0.1582	11.0
FTL	YH24-127	217.38	218	0.62	7054	0.7054	20200	2.02	6.2
FTL	YH24-127	218	219	1	4884	0.4884	23900	2.39	4.8
FTL	YH24-128	255.25	256.00	0.75	24400	2.44	1432	0.1432	13.4
FTL	YH24-128	256.00	257.00	1.00	1403	0.1403	695	0.0695	0.5
FTL	YH24-128	257.00	258.00	1.00	283	0.0283	286	0.0286	0.2
FTL	YH24-128	258.00	258.50	0.50	410	0.041	159	0.0159	0.2
FTL	YH24-128	258.50	259.50	1.00	10300	1.03	498	0.0498	4.5
FTL	YH24-128	259.50	260.50	1.00	5093	0.5093	398	0.0398	5.0
FTL	YH24-128	260.50	261.41	0.91	8182	0.8182	398	0.0398	2.8
FTL	YH24-128	261.41	262.50	1.09	6938	0.6938	398	0.0398	1.7
FTL	YH24-129	120	121	1	3279	0.3279	487	0.0487	0.8
FTL	YH24-129	121	122	1	1847	0.1847	918	0.0918	0.6
FTL	YH24-129	122	123	1	2605	0.2605	3900	0.39	1.1

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu ppm	Cu %	Zn ppm	Zn %	Ag g/t
FTL	YH24-129	123	123.54	0.54	3876	0.3876	17700	1.77	1.3
FTL	YH24-129	123.54	124.08	0.54	1036	0.1036	781	0.0781	0.2
FTL	YH24-129	124.08	124.58	0.5	73400	7.34	4300	0.43	12.1
FTL	YH24-129	124.58	125.08	0.5	18900	1.89	2300	0.23	3.9
FTL	YH24-129	125.08	126	0.92	972	0.0972	610	0.061	0.2
FTL	YH24-129	126	127	1	5512	0.5512	3600	0.36	1.5
FTL	YH24-129	127	127.51	0.51	1574	0.1574	1607	0.1607	0.3
FTL	YH24-129	127.51	128.26	0.75	4217	0.4217	19500	1.95	1.2

Table 4: Historic assay results including Au results

Drilled by	Hole	From (m)	To (m)	Interval (m)	Cu %	Zn %	Ag g/t	Au g/t
YHM	YH22-80	46.77	47.2	0.43	1.50	21.2	169	2.237
YHM	YH22-80	47.2	47.77	0.57	0.69	11.6	441.7	5.689
YHM	YH22-80	47.77	48.18	0.41	0.74	3.45	181	0.979
YHM	YH22-80	48.18	49.18	1.0	0.25	3.09	18.1	0.138
NRM	YH-91-5	134.8	135.4	0.6	0.31	26.2	582.9	16.9

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 York Harbour Metals NL Incorporated ("YHM") previously drilled holes YH22-80 September-October 2022. Y-91-5 Completed by Noranda ("NRM") 1991 season YHM completed five phases of diamond drilling between 2021-2024. Noranda completed 2 drill seasons between 1990-1991 All drilling conducted by YHM/NRM was completed under the supervision of a registered professional geologist as a Qualified Person (QP) who was responsible and accountable for the planning, execution and supervision of all exploration activity as well as the implementation of quality assurance programs and reporting.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Previous drilling by YHM, Noranda and current drilling by FTL is all diamond core drilling The diamond drilling rig for YHM was operated by Forest Fusion Drilling The diamond drilling rig for FTL is operated by Gladiator Drilling Ltd The size of core for all previous and current holes is standard tube NQ (47.8mm diameter) Diamond drill core was not orientated
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery was previously determined by YHM and currently measured by FTL by measuring the core length between the driller's marker blocks Core recoveries were measured for every drill run completed The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage of recovery. YHM information was previously recorded in a drilling database which FTL has complete records of. FTL information is being recorded in a relational drilling database hosted externally to FTL. Diamond drilling utilised drilling fluids to assist with maximising core recoveries. Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling. There is no significant loss of material reported in the mineralized parts of the diamond core reported in this announcement. No known relationship exists between sample recovery and grade
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All previous drill samples collected by YHM/NRM and current drill samples collected by FTL were logged by a qualified geologist and recorded in logging tables. Attributes recorded included lithology, alteration, structure, mineralisation and other observations as appropriate which are in general qualitative in nature. All previous YHM drillholes with new sample collection by FTL had YHM logs validated by FTL and were re-logged by FTL for lithology and mineralisation where required. Previous and current drillholes are explorative in nature, however the drillholes have been logged to a level of detail to be considered suitable to support a Mineral Resource Estimate. All previous drill holes by YHM and current drill holes by FTL were

Criteria	JORC Code explanation	Commentary
		geotechnically logged, with logs including information pertaining to rock quality designation, hardness, weathering, and fracturing.
		Magnetic susceptibility readings were previously taken by YHM and currently taken by FTL at least once per metre using a KT-10 magnetic susceptibility meter as point measurements.
		• Specific gravity measurements were previously collected by YHM once per every three metres using Archimedes method. Extra readings were taken in areas of semi-massive or massive sulphide. Specific gravity measurements were collected by FTL once every 10-15m, and at closer intervals in areas of semi-massive or massive sulphide.
		All cores were photographed by YHM and FTL in the core tray. All core for new geochemical analysis by FTL has been re-photographed in its current condition.
		All previous drillholes being resampled by FTL have been logged in their entirety.
		Logging conducted is both qualitative and quantitative.
Sub-sampling techniques and sample	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether 	All samples previously collected by YHM and samples collected by FTL were taken using the following sub-sampling techniques and sample preparations
preparation	sampled wet or dry.For all sample types, the nature, quality and appropriateness of the sample	Sample intervals were determined by geologists during logging based on geological boundaries determined by the logging geologist.
	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Diamond core was cut in half using an electric core saw. If the core was too soft or friable or broken to be cut with a saw, a hammer and chisel were used or representative halves of rubble were collected.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Half the core was submitted for analysis and the remaining half was stored securely for future reference and potentially further analysis if ever required.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	• Sample intervals were marked on the core by the responsible geologist, considering lithological and structural features and visible mineralisation.
		Paper sampling tags with sample identification numbers were issued by the laboratory where samples were being dispatched to for analysis. These sampling tags with sample identification numbers were stapled to the core boxes where the corresponding sample was being taken from.
		Sample method and size is considered appropriate for this type of deposit.
		• For previously collected YHM samples, intervals were 0.12m minimum, up to 1.0m maximum with an average width of 0.8m.
		For sample collected by FTL, intervals were a minimum of 0.5m and a

Criteria	JORC Code explanation	Commentary
		 maximum of 2.0m. Field duplicates by YHM were taken at a rate of 1 in 22 samples to measure sample representativity. Field duplicates were quarter core. Field duplicates by FTL were taken at a rate of 1 in 20 samples to measure sample representativity, and are taken as quarter core. Sample preparation was conducted by Eastern Analytical in Springdale, Newfoundland. Samples were dried at a low temperature. Dried samples were then weighed before being crushed in a jaw crusher to 80% passing -10 mesh, then crushed material was split through a stainless steel riffle splitter. The remaining coarse reject was retained. The split sub-sample of ~250g was then pulverized to 95% passing 150mesh. The sample preparation method is considered industry standard. Sample sizes are considered appropriate to the mineralisation style and grain size of the material.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples from YHM were assayed by Eastern Analytical, located in Springdale within Newfoundland, Canada. A four-acid digest (near-total digestion) was used. The digested solution was then analysed by ICP-OES for a multi-element suite of 34 elements. A 30g Fire Assay with atomic absorption finish was used to determine Au. Subsequently, samples with Ag greater than 6ppm, Pb greater than 2200ppm, Cu greater than 10,000ppm, Zn more than 2200 ppm were analysed by AAS. ICP is considered a total digestion method. Atomic Absorption is considered a partial digestion method in the case coarse gold. Quality control procedures of YHM included routine insertion of CRMs at a rate of 1 in 22 samples, insertion of blanks at a rate of 1 in 22 samples, collection of field duplicates at a rate of 1 in 22 samples. These QC samples were included in batches of sampling to test for accuracy and precision. A review of the QC samples assay results received has determined the accuracy and precision of the reported results to be acceptable. In addition to YHM QAQC samples included within the bath, the laboratory included its own Certified Reference Materials, blanks and duplicates. The level of QAQC undertaken by YHM is inline with typical best practice. Eastern Analytical have their own internal Quality Control and Quality Assurance protocols for sample preparation and assaying.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Verification of significant intercepts has been conducted by internal Firetail company geologists. Results have been reviewed by the Competent Person. No twinned holes are reported herein. Field data collected by YHM and FTL was recorded in Excel in a field laptop and then imported into an Excel master data file. All field data is then imported into a relational database stored externally to FTL. No adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The coordinates of the reported drillholes were based on NAD83 UTM Zone 21N. Drillhole coordinates were verified by FTL using a handheld GPS. Drillhole coordinates have not been surveyed with a differential GPS. Topographic control is ±3-5m. Downhole surveys were taken by YHM and FTL using a magnetic Reflex EZ-Trac borehole surveying tool. Surveys were taken as single-shots every 30m and at the completion length of every hole by lowering the tool down the drill rods and through the drill bit beyond the effect of the drill rods. The downhole measurements were recorded by the drillers and given to the project geologist on a shift-by-shift basis.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 YHM conducted sampling at a spacing appropriate for first-pass exploration of semi-massive to massive sulphide. Sampling was not undertaken in areas proximal to semi-massive to massive sulphide which may or may not contain economic mineralisation. FTL conducted sampling at a spacing appropriate for first-pass exploration of semi-massive to massive sulphide. Sampling was undertaken in areas proximal to semi-massive to massive sulphide which may or may not contain economic mineralisation. Drill holes are spaced appropriately for coarsely defining mineralisation lodes.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Firetail currently considers YHM and FTL sampling orientation to be unbiased with the drilling direction nominally at a high angle to the interpreted strike of mineralisation. Drilling across the Project has been conducted on a variety of orientations due to the nature of the topography. A detailed geological model of mineralisation is required to further assess the true width of mineralisation

Criteria	JORC Code explanation	Commentary
		 and to what extent (if any) the orientation of drilling has induced bias. The drilling intercepts reported herein are reported as downhole. Further drilling is required to confirm the geometry of mineralisation.
Sample security	The measures taken to ensure sample security.	Drill core was transported in wooden core boxes from the drill site to the secure YHM/FTL logging facility in Lark Harbour, Newfoundland, by the drill contractor or YHM contractors.
		Samples were cut at the YHM logging facility.
		Samples were collected by YHM-contracted geologists/assistants and placed in sequentially pre-numbered plastic bags with sample numbers written on it.
		 Plastic sample bags were placed within larger polyweave bags before being delivered by YHM contractors to the laboratory in Springdale, Newfoundland.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No YHM audits are documented to have occurred in relation to sampling techniques or data.
		YHM sampling techniques have been reviewed by FTL personnel and are considered adequate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The previously drilled YHM drillholes YH22-054 and YH22-077 and YH24-123 are located on license number 038342M consisting of 184 contiguous claims. These claims were wholly owned by York Harbour Metals NL Inc at the time of drilling of YH22-054 and YH22-077, but are currently 51% owned by York Harbour Metals NL Inc. and 49% owned by Firetail Resources Canada Inc (a wholly owned subsidiary of Firetail Resources Pty Ltd). A 2% net smelter return royalty applies across the Project. The York Harbour Project is located 27km west of the city of Corner Brook, in western Newfoundland, Canada near the town of York Harbour. Open file verification has been conducted to confirm licenses are in full force.

Criteria	JORC Code explanation	Commentary
		All mineral claims are currently in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The York Harbour Property copper-zinc mineralisation was first discovered in 1893. Since then, a significant amount of underground exploration and development as well as surface diamond drilling exploration and underground diamond drilling delineation has been completed with positive results.
		 Underground exploration and development combined with surface drilling documented eleven irregular zones of Cu-Zn-Ag±Au-rich volcanogenic massive sulphide mineralisation occurring as stratabound lenses within the upper portion of the altered lower basalt unit immediately below the contact with the generally unaltered upper basalt unit. Massive sulphide mineralisation occurs along a 600 m strike length. However, over 85% of the past exploration work (surface and underground drilling and development) was carried out in less than 350 m of strike length and to 150 m below surface.
		At the York Harbour Project, exploration was previously completed by several companies. Most recently this included York Harbour Metals and Phoenix Gold Resources Corp. Companies that conducted drilling historically to this included Noranda Exploration, York Consolidated Exploration Limited, Long Lac Mineral Exploration Ltd, Big Nama Creek Mines Ltd, and Independent Mining Corp.
Geology	Deposit type, geological setting and style of mineralisation.	Volcanogenic massive sulphide mineralisation is widespread in the ophiolitic rocks of central and western Newfoundland, including more than 175 showings, prospects, and 14 past producing deposits. For a brief period in the late 1800s, production from ophiolite-hosted deposits, including the York Harbour mine, made Newfoundland the world's third-largest copper producer.
		• The alteration and mineralisation within York Harbour is typical of volcanogenic massive sulphide (VMS) deposits in mafic-dominated settings (i.e., Cyprus-type systems), and the presence of both chlorite and chalcopyrite indicates that locally there was high temperature alteration (i.e., >300 °C). The presence of multiple sulphide horizons at different stratigraphic levels, and the hematite alteration plus local chlorite-pyrite mineralisation in the upper basalts, indicates that hydrothermal activity was ongoing during the deposition of the entire stratigraphic package, including the upper basalts above mineralisation.

Criteria	JORC Code explanation	Commentary
		Mineralisation at the York Harbour mine area consists of multiple, irregular horizons of massive and semi-massive pyrite, sphalerite, chalcopyrite with minor pyrrhotite and rare galena. Colloform textures are commonly preserved, and the lenses are commonly bounded by narrow hanging wall and footwall shear zones. The massive sulphide lenses are often brecciated and are underlain by a variably developed copper- to zinc-rich stringer zone typically associated with intense hydrothermal brecciation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The following coordinates have been verified by FTL with a handheld GPS and are presented in NAD83 Zone 21N Collars as per table contained in Table 1 within body of announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All drill hole intersections are reported above a lower cut-off grade of 0.1% copper. A maximum of 5m of internal waste was allowed. Metal equivalents for the drilling completed at the Skyline Project have been calculated at a copper price of US\$9,000/t, silver price of US\$28/oz and zinc price of US\$2,700/t. Individual grades for the metals are set out at Tables 2, 3 and 4 of this announcement. Copper equivalent was calculated based on the formula CuEq (%) = Cu(%) + (Zn (%) x 0.30) + (Ag (g/t) x 0.010). It is acknowledged that other metals do occur within the mineralised intercepts but due to the irregular occurrence these have not been included in reporting to maintain consistency of comparable intercepts. Where other minerals are included, this will be noted with the intercepts with gold calculated using (Au (g/t) x 0.89) with a gold price of US\$2500/Oz. No metallurgical recovery factors have been applied to the drill hole results due to the exploration nature of the drilling. The Company's view is that all elements in the copper equivalent calculation have a reasonable potential to be recovered and sold. No value has been given to other minerals, which may potentially have economic value, in the calculation of

Criteria	JORC Code explanation	Commentary
		 the Copper equivalent value. For samples of varying lengths, a length-weighted average is applied for the reported intersection. The formula is (Σ(Cu grade % x sample length)/Total Interval Width). The weighted average of the intersection must exceed the cutoff grades stated above. Minimum sampling interval of 0.5m, with all samples adhering to geological contacts. Geological contacts frequently provide boundaries for intersections due to grade associated with varying lithotypes. Maximum internal dilution of 5m below the cut-off grade is incorporated into the reported intersections. Consideration is also given to potential minimum mining widths as part of the test for prospects of eventual economic extraction. An example of the calculation is from drillhole YH24-123 reported in this release, from 206.2m Sample 1: Length = 0.71; Grade = 11.22% Cu Sample 2: Length = 0.5; Grade = 0.37% Cu Sample 3: Length = 0.55; Grade = 0.07% Cu Sample 4: Length = 0.6; Grade = 3.02% Cu Intersection grade is: ((0.71x11.22)+(0.5x0.37)+(0.55x0.07)+(0.6x3.02))/2.36 = 4.24% Cu The Competent person determined to include the 0.55m @ 0.07C Cu in the intersection because in a mining scenario, it is unlikely that this internal dilution could be separated
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intervals of lithology and mineralisation reported are apparent widths. Further drilling is required to understand the geometry of mineralisation and thus the true width of mineralisation. However, the current interpretation is that the mineralisation is predominantly controlled by northwest striking structures dipping steeply towards the west. Down hole lengths only reported, true width uncertain at this time.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps and plans have been included in body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	All information used to calculate the reported intervals, including internal sub grade material where aggregated interval of 2.0m @ 0.5% CuEq has

Criteria	JORC Code explanation	Commentary
	Results.	been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All exploration data considered meaningful and material has been reported in this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geological modelling based on the previous exploration drilling and underground development is proposed to be conducted in order to determine the likely extensions to known mineralisation and to assist with future drill planning. Testing for lateral and depth extensions, and step-out drilling of known mineralisation Maps and diagrams have been included in the body of the release. Further releases will be made to market upon new drilling information being received by FTL.